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Phase-retrieval from coded diffraction patterns (CDP) is important to X-ray crystallography,
diffraction tomography and astronomical imaging, yet remains a hard, non-convex inverse problem.
We show that CDP recovery can be reformulated exactly as the minimisation of a continuous-variable
XY Hamiltonian and solved by gain-based photonic networks. The coupled-mode equations we ex-
ploit are the natural mean-field dynamics of exciton-polariton condensate lattices, coupled-laser ar-
rays and driven photon Bose—Einstein condensates, while other hardware such as the spatial photonic
Ising machine can implement the same update rule through high-speed digital feedback, preserv-
ing full optical parallelism. Numerical experiments on images, two- and three-dimensional vortices
and unstructured complex data demonstrate that the gain-based solver consistently outperforms
the state-of-the-art Relaxed-Reflect-Reflect (RRR) algorithm in the medium-noise regime (signal-
to-noise ratios 10-40 dB) and retains this advantage as problem size scales. Because the physical
platform performs the continuous optimisation, our approach promises fast, energy-efficient phase
retrieval on readily available photonic hardware. uch as two- and three-dimensional vortices, and
unstructured random data. Moreover, the solver’s accuracy remains high as problem sizes increase,

underscoring its scalability.

INTRODUCTION

Recently, there has been rising interest in using
physics-inspired, physics-based computing systems for
solving hard optimisation problems, including many that
are NP-hard [1-6]. An important example is the min-
imization of the XY Hamiltonian with sign-varying
couplings between spins, where each spin is allowed
to take on a continuous value in the vector s; =
(cosB;,sin6;) or complex form s; = e where 6; €
[0, 27). Such continuous-spin systems appear naturally in
gain-dissipative photonic lattices, exciton-polariton net-
works, laser arrays, and related platforms, where each
oscillator is represented by a complex variable whose am-
plitude and phase evolve in time [7-12].

The XY minimization problem involves the quadratic
Hamiltonian

N
Hxy({si}) = =3 Jijsis + cc., (1)
,J

where J;; represents the pairwise couplings. The task is
to find the spin configuration {s;} that minimizes Hxy.
This is a continuous quadratic optimization (QCO) prob-
lem, with applications ranging from clustering [10] to
portfolio optimization [13].

One key motivation for studying XY-type physical
networks is their ability to perform highly parallel, ana-
logue searches for low-energy configurations, thereby of-
fering an alternative to purely digital algorithms. Re-
cently, there have also been efforts to force an XY -based

system into effectively binary (Ising-like) states by intro-
ducing a large penalty term. Specifically, one adds

N

Hp({s:}) = Hxy + PZ[SZQJFQQL (2)
i=1

where P > 0 is chosen so as to penalize any non-zero real
part of s;. If P is sufficiently large, spins tend to align
at phases 0 or 7, effectively reducing the continuous-spin
XY problem to the binary Ising problem.

The continuous nature of the XY Hamiltonian also
makes it relevant to other QCO tasks. One such problem
of practical importance is the phase retrieval problem.
This is typically stated as follows: given a real measure-
ment vector b € RM and a complex matrix A € CM*¥N|
one seeks to find a complex vector x € CV satisfying

|Ax| = b, 3)

where || denotes element-wise amplitude. The phase re-
trieval practical significance arises because this problem
is often encountered in applications such as X-ray crystal-
lography [14, 15], astronomical imaging [16], and diffrac-
tion imaging [17, 18].

In many of these applications, the complex vector x
represents the complete information about the sample
and is referred to as the sample vector. The matrix A
describes the action of the optical system, often well-
approximated by a Fourier transform. While the inten-
sity of the resulting electromagnetic wave can be mea-
sured by standard detectors (e.g., charge-coupled de-
vices) to yield the real-valued amplitude b, the phase



component is typically lost in the measurement process.
Recovering x from b and A constitutes the phase re-
trieval problem, which is NP-complete [19], underscoring
its computational difficulty.

Moreover, without further constraints, the phase re-
trieval problem is frequently ill-posed because multiple
distinct sample vectors x can give rise to the same mea-
sured amplitude b. For instance, if A is a square matrix
representing a discrete Fourier transform, any arbitrary
phase profile can be applied to b before performing an in-
verse Fourier transform, producing infinitely many valid
solutions x. In such scenarios, even a theoretically exact
algorithm may yield a recovered vector x that deviates
from the original x [20]. This means that any solution
of the form x = D® A~'b, where D® is a diagonal ma-
trix with arbitrary diagonal elements of the form e,
0; € [0,2m) and A1 is the inverse discrete Fourier trans-
form matrix, will satisfy the requirement given by Eq. (3).
Efforts to mitigate ill-posedness often rely on additional
assumptions about the sample vector x. For instance,
some approaches impose a sparsity constraint by spec-
ifying the number of nonzero entries in x [21]. Others
adopt even stricter conditions, stipulating the exact sup-
port of x; that is, which elements are nonzero [22-24].
However, none of these methods can guarantee that the
resulting phase retrieval problem is well-posed (i.e., ad-
mits a unique solution).

Candes et al. [25] proposed a formulation called the
“Coded Diffraction Pattern” (CDP) experiment, which
provides some solution uniqueness guarantee. Under this
formulation, a sample vector x is first subjected to the
action of L random phase filters, each defined by a di-
agonal matrix D@ i = 1,...,L. Each filter is defined
by diagonal entries that are complex numbers with unit
magnitude and randomly distributed phases. Thus, the
filter modifies only the phase of the incoming signal while
leaving its amplitude unchanged. This produces L fil-
tered sample vectors, which are Fourier transformed sep-
arately. The results are then concatenated, and ampli-
tudes are taken to form the observation vector b. Hence,
in this formulation, A is a M by N complex matrix,
where M = L x N, and represents the combined ac-
tion of the random filters and the Fourier transforms.
Fig. 1 provides a schematic diagram showing the exper-
imental setup of this arrangement. This formulation is
theoretically appealing because that if the distribution
of the random diagonal matrix elements satisfies certain
conditions, then with sufficiently large L, the solution of
the phase retrieval problem is guaranteed to be unique
Ref. [25]. It was also demonstrated numerically that even
with filters whose diagonal matrix elements did not follow
random distributions that satisfy the conditions laid out
n [25], the problem could still become well-posed with
increased L. Empirically, the process of applying mul-
tiple filters corresponds to the practice of oversampling
the target and is reasonably achievable in many imaging
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FIG. 1. A schematic diagram for the CDP experiment frame-
work. A light source is diffracted by the sample under inves-
tigation, and the diffracted complex-valued signal is split into
L identical beams, each of which is directed towards a phase
filter that modifies the phase of the incident signal at each
spatial location. The phase-modified beams are then directed
through a lens system, and their intensities are finally cap-
tured.

applications [25-27].

The performance of conventional phase retrieval al-
gorithms in this setting has been systematically exam-
ined in [26]. More recent proposals include semidefi-
nite programming [28, 29], matrix completion [30], and
an alternating-projection method called Relazed-Reflect-
Reflect (RRR) [31]. Although RRR lacks a compre-
hensive theoretical foundation, subsequent investigations
[32] reported robust empirical performance. In particu-
lar, [33] demonstrated that RRR outperforms both the
“Phase Lift” approach of [28] and Wirtinger flow meth-
ods [34] in a variety of benchmark tests.

In this work, we demonstrate that the Coded Diffrac-
tion Pattern (CDP) variant of phase retrieval can be re-
formulated as an XY Hamiltonian minimization prob-
lem, amenable to physical solvers that emulate the same
Hamiltonian, for instance, through gain-based oscilla-
tor networks [3, 35]. Under moderate noise levels in
the measured amplitudes, we show numerically that a
gain-based system can outperform the state-of-the-art
Relaxed-Reflect-Reflect (RRR) algorithm and reliably re-
construct complex-valued experimental data with high
accuracy.



METHODS

Mapping Phase Retrieval into XY Problem

The work of [29] first recast phase retrieval as a non-
convex quadratic program, facilitating its solution via a
suitable relaxation method. Following a similar line of
reasoning, we show how to reformulate phase retrieval
in the CDP experiment setting as an XY Hamiltonian
minimization problem.

We start by defining the unknown phase of the obser-
vation as p, where all elements of this vector are complex
and have unit amplitude i.e. p; € {0, € [0,2m)}. By
this definition, we have:

N
ZAZ']'(E]' = bzpz for all i = ].7 7J\I (4)
j=1

Suppose that the complete observation information in-
cluding the phase information p and the amplitude in-
formation b is known, then the process of trying to find x
that satisfy the constraint given by Eq. (4) is equivalent
to the minimisation of the cost function & given by:

2
M

N
E({z;}) = Z ZAU%‘ —bipi| (5)

i=1 |j=1

where the minimisation is over all possible sets of {xz;}
for j € {1,---, N}. If the observations b and p are exact,
the minimum value of this expression should be 0, but if
uncertainty exists in either of them, then this expression
is a least square problem over x. The solution to the least
square problem is given by the Moore-Penrose inverse,
also known as the pseudoinverse of A, denoted as A':

N
vi=>_ Albp (6)
J

Hence, for any given set of observation phase {p;}, the
minimal cost function & is given by:

M | N M

E({pi}) = Z ZZAijA;kbkpk — bipi (7)
ik

%

This means that to solve the original phase retrieval prob-
lem, one needs to find a set of {p;} that minimises this
cost function L, which is essentially a QCO problem over
a set of variables {p;} that all have unit amplitude and
unconstrained phases, so this problem can be mapped
into an XY Hamiltonian minimisation problem.

To put it into an explicit XY Hamiltonian form, we

rearrange Eq. (7) as follows:

M |NM M ?
EUpid) =D AiAlbipr =Y dinbipr
i | gk K
2
MM [N .
= Z Z Ay ALy — Gir. | brpx
i |k \J
M | M 2
=YD Girbipr
i |k
M M
= Z Z GijGlibip;bipy,
P
M ~
=— Z JikDjDks (8)
ik

where from the second line to the third line for ease of
notation we defined G, = Z;V Ajj A}k—éik, and from the
fourth line to the last we identified the coupling matrix
elements of the equivalent XY Hamiltonian to be J;;, =
= GisGiibjbr.

In principle, Eq. (8) is already in the form of an XY
Hamiltonian we first introduced in Eq. (1). Noting that
AAT is Hermitian and AATAAT = AAT by property of
the pseudoinverse, one can simplify the expression for jij
to:

N
Jij = (Z ApAlL - 517) bibj, (9)
k

which leads to an equivalent XY Hamiltonian:

M N M
E({pi}) =- Z <bibj Z AikALj> pip; + Z 8ijPiD;
ij k ij
= Hxy({pi}) + M, (10)
where M is as before the dimension of observation vec-
tor b. Hence, minimising & is equivalent to minimising
the simpler XY Hamiltonian H, whose coupling matrix
elements are given by:

N
Jij = AwAl bib;. (11)
k

This coupling matrix was then used as input to the simu-
lated gain-based system, with outcomes presented in the
Results section.

We note that the Moore Penrose pseudoinverse Af
may become ill-conditioned when rank(4) < N. A
Tikhonov-regularised alternative,

(cI+ AA*) 1A%,

with ¢ > 0, can be used to stabilise the inversion at the
cost of losing the compact expression in Eq. (9). In prac-
tice, choosing ¢ ~ 1073||A||2 leaves all numerical results
within the error bars reported below.



Simulated Gain-based System

To minimise the XY Hamiltonian Hxy for a given
phase retrieval problem, we simulate an oscillator net-
work following the gain-based dynamics given by

dip; M

dtZ = (vi — [0il®) ¥i + Z Jij¥; (12)
j

d’Yz _ _ 2

o =il (13)

where v; € R is the effective injection rate of oscillator
i (gain minus losses), 1); € C characterise each oscilla-
tor, and J;; specifies the coupling strength between os-
cillators. Jj; is calculated from the given phase retrieval
problem according to our previous discussion. € is an ex-
ternally controlled positive constant, which measures the
responsiveness of the gain of each oscillator to the am-
plitude variations of each oscillator. Eqs.(12)—(13) faith-
fully reproduce the gain—dissipative evolution observed in
networks of exciton-polaritons hosted in semiconductor
micro-cavities [36], in coupled-laser arrays [12], in driven
photonic oscillator lattices [37], and spin wave Ising ma-
chines [38]. Hardware platforms that do not possess in-
trinsic gain control, most notably the spatial photonic
Ising machine (SPIM) [39, 40], can nevertheless imple-
ment the same update rule by applying digital feedback
to the spatial-light modulator after each optical pass,
thereby emulating the gain—loss loop in silico while re-
taining full optical parallelism. This kind of dynamics
was formulated and studied in [3, 41, 42], showing that
the dynamics of this system leads to stationary states
close to or at the global minimum of the XY Hamiltonian
specified by the coupling matrix J with high probability.
Equation (12) encapsulates the main dynamics of 1; with
the interplay of the effective gain, non-linear loss, and the
coupling terms. Eq. (13) provides a feedback mechanism
that pushes the amplitudes of all oscillators towards 1.
It was previously reported that this feedback mechanism
is crucial for the gain-dissipative dynamics to produce
good solutions close to the true global minimum of the
XY Hamiltonian [41].

In principle, the gain-based optimiser works as follows.
At the start of the dynamical evolution, the oscillator
network has a set of highly negative effective gains ~;,
so the system has a stable fixed point at ¥; = 0. Due
to the gain dynamics given by Eq. (13), the gains ~;
increase over time and eventually cross a critical value
at which supercritical Hopf bifurcation occurs [3, 42].
The v; = 0 fixed point becomes unstable, and oscilla-
tors spontaneously increase to some non-zero amplitudes
and start to have well-defined phases. Over time, all am-
plitudes |¢;| approaches 1, while the phases of oscillators
also approach their stationary values, which will be read
out as the solution to the XY problem.

In our simulations, we first initialised the amplitude

of 1; to some random small but non-vanishing values
uniformly distributed in the range (0,0.1) and initialised
their phase uniformly randomly in the range [0, 27). Ini-
tial gains ; were initialised uniformly randomly in such
range of values, so that initial stages of the evolution are
below the threshold, which means that oscillator ampli-
tudes will tend to decay to 0 if gains are held constant at
this level. The system was then evolved until it reached a
stationary state, and the phases of oscillators were used
as the spin configurations p for the XY problem. This
can then be substituted into Eq. (6) to find the solution
X to the original phase retrieval problem.

Generation of CDP Phase Retrieval Problems

For a given sample vector x € CV, we had to gener-
ate observation vector b € RM under CDP experiment
framework to serve as the input to our XY minimiser.
A set of L random filters was first generated. Each fil-
ter could be represented as a diagonal matrix D) where
i = 1,...,L, and each diagonal elements DY was uni-
formly randomly selected from {1, 4, —1, —i}, correspond-
ing to a phase shift of 0, 7/2, 7, 37/2 respectively. These
diagonal matrices were stacked along the rows to produce
a M x N matrix G, where M = NL, as follows:

DM
D@
G = . . (14)

DiL)

Similarly, we represent the action of the Fourier trans-
form on the sample vector by using the discrete Fourier
transform (DFT) matrix defined as:

1 1 1 1
wN w oo w]]\\,ffl
FN:L 1w wh e W2V 7
VN
1 wx.fl WJZ\;J.V—l) wng._1)2
—2mi/N

where wy = e is the N-th root of unity. We con-
struct an M x N matrix F by stacking L copies of the
DFT matrix Fy as consecutive row blocks, effectively
placing each DFT matrix on top of the next
Fy
F=1] :]. (15)
Fy
Then the elements of the matrix A are defined by as
Aij = Fi;Gij, (16)

while the observation vector b can be obtained by sub-
stituting matrix A and x into Eq. (3). The observation



vector b and the generated matrix A are supplied to our
gain-based optimiser Eq. (12)-(13) and the phases 6; are
found as the stationary states. The sample vector x is
then reconstructed from Eq. (6).

The block stacking of all Fourier operators F and di-
agonal masks D) is mathematically identical to the de-
composition of a fully-connected interaction matrix into
multiple Mattis subproblems recently realised in a fully
programmable SPIM via focal-plane division, where the
energies of all sub-Hamiltonians are computed in parallel
on distinct camera regions [40]. This analogy suggests
that an experimental CDP phase-retrieval setup could
exploit the same optical parallelism, processing the L
masks in a single physical shot and obtaining an L-fold
reduction in acquisition.

In this study, we also considered the case where b is
noisy, which is to be expected in realistic experimental
data. In this case, a noisy observation vector b is pro-
duced by adding a normally distributed random noise to
each element of the noiseless observation vector b, i.e.
b, = b; + & with & ~ N(0,0%). The variance of noise
o was used to control the magnitude of noise in the ob-
servational data so that we could investigate its impact
on the performance of the gain-based system in solving
the phase retrieval problem. To quantify the amount of
noise in the given noisy observation vector, we define the
signal-to-noise ratio (SNR) as follows:

b2

SNR = 10 loglo —,
[b—bll;

(17)

which is conventionally measured in a logarithmic scale
and quoted in unit of decibel. In this expression, ||z
denotes vector 2-norm.

Performance Evaluation

To measure the quality of the calculated solution, we
used metrics that were also used previously in [29, 33].
The most direct metric to measure the success of the
phase retrieval algorithm is the Euclidean distance be-
tween the observation vector calculated from the recov-
ered sample vector X and the given observation vector
b, normalised over the vector norm of the observation
vector b.

For clearer visual representation, it is more convenient
to express this quantity on a logarithmic scale, similar to
SNR. Therefore, we define the relative observation error
(ROE) in decibels as:

A% b
ROE = 10logy, | )I('LIIQ L2,

(18)
where |-| denotes taking the amplitude element-wise, and
X is the sample vector calculated by the phase retrieval
algorithm. In experiments, the true sample vector x is

typically unavailable, so the ROE would be an appropri-
ate way to evaluate the quality of the recovered solution.
However, in generated datasets where the true sample
vector x is known a priori, we can instead measure the
Euclidean distance between the recovered sample vector
X and the true sample vector x. Note that the recovered
sample vector X may have a global phase shift relative
to x while reproducing the exact same observation vec-
tor b. Hence, the error metric should be defined as the
minimum Euclidean distance between €% and x for all
6 € [0,27). This quantity is also expressed in decibels
and is referred to as the relative sample error (RSE),
which is defined as:

0
RSE = 10log,, (min ”ex_’”) . (19)
0 [1x]2
In a phase retrieval problem, this error is usually the
most important quantity because it measures how close
the recovered solution is to the original sample.

The two error metrics are closely related but not equiv-
alent, and both are required to give a complete picture
about the well-posedness of the phase retrieval problem
itself and the performance of the phase retrieval algo-
rithm used. For example, if a solution calculated by a
phase retrieval algorithm yields a small ROE value but
a large RSE value, this indicates that the algorithm is
performing well, but the problem itself is poorly defined
because it has more than one degenerate ground states
(i.e. more than one x can all produce the same obser-
vation vector b). This is because the phase retrieval al-
gorithm only has access to b and A, so any solution X
that can minimise |||AX| — b||2 are equally good to the
algorithm, even if it might be far from the true x from
which the problem was first constructed. This situation
is illustrated in Fig. 2(a) and (b) where the simulated
gain-based system tries to recover an image from an ob-
servation vector produced by 2 phase filters. While ROE
keeps decreasing, RSE has remained largely flat and the
system failed to recover the original image. As far as
the phase retrieval method is concerned, it is performing
well because it is able to find a vector x that produces an
observation vector b that is very close to the known ob-
servation vector b. This means that this phase retrieval
problem under the CDP experiment framework with only
2 phase masks is ill-defined, because it has degenerate
ground states.

When both RSE and ROE are small, it suggests that
the phase retrieval problem is well defined and the solu-
tion found is close to the true solution. This case is shown
in Fig. 2(c) and (d) where the same gain-dissipative sys-
tem recovers the same image from an observation vec-
tor produced by 5 phase filters. RSE and ROE decrease
in tandem, indicating that the algorithm is approaching
the planted ground state. Hence, when studying phase
retrieval algorithms, it is crucial to consider both the
ROE and RSE to determine whether the phase retrieval
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FIG. 2. Comparison of phase retrieval problems with differ-
ent number of phase masks. (a) Time evolution of errors for
the phase retrieval problem under CDP experiment frame-
work with 2 phase masks. The inset gives the final recon-
structed image produced by the phase retrieval algorithm.
(b) Time evolution of errors for the phase retrieval problems
with 5 phase masks. In both cases the problems were solved
with the gain-dissipative system with a random initial con-
dition. The original image, which is visually identical to the
image shown in inset of (b), is from the labelled face in the
wild (LFW) dataset.

method itself or the problem at hand is responsible for
the failure to recover the original signal.

Comparison with Existing Algorithm

To compare the gain-dissipative system with estab-
lished phase retrieval methods, we focus on the RRR
algoritm for phase retrieval [31]. Originally designed
for the sparse variant of phase retrieval, RRR belongs to
the family of alternating projection methods, similar to
classic techniques such as the Gerchberg—Saxton (GS)
method [43] and Fienup’s hybrid input—output (HIO)
scheme [22]. These algorithms operate in an iterative
fashion, applying two distinct projection operators in
sequence at each iteration. Among them, RRR has
shown particularly strong empirical performance, sur-
passing multiple modern phase retrieval methods [33].

The RRR algorithm starts with a guessed observation
vector by, and employs two projections P; and P,. When
given a (generally complex) estimated observation vector
b,,, P, keeps only the S largest elements in the vector and
sets other to 0, where S is the given sparsity constraint
in the observation data; For P,, when given b, € CM|
it keeps the phase of each elements but overwrites their
amplitudes with the known correct amplitudes in b &€
RM . Overall, in each iteration, the algorithm applies P;
and P, as follows:

bn+1 = bn + /8 [PQ (2P1(bn) - bn) - Pl(bn)] ) (20)

where 3 is a constant parameter. We found the value
B = 0.5 used by authors of [33] generally produced good
results.

To adapt RRR for the CDP variant of phase retrieval
problem, we follow the method proposed in [33] and mod-
ify projection P; to the following:

Pi(b,) = AA'b,. (21)

One can motivate this projection by considering that
ATb, makes use of all L sets of observations, unique
to the CDP formulation, to produce an “average” esti-
mated sample vector x,, based on all available observa-
tions, and then using this best estimation to produce the
next b, 41 by calculating Ax,,, which in turn ensures that
b,,+1 produced this way remains in the range of A. We
then substituted this modified projection P; into the iter-
ative scheme of Eq. (20), keeping the original P, operator
and S = 0.5, and applied the resulting RRR method to
the same phase retrieval instances used by the gain-based
system.

The classical GS method, which was one of the first
proposed heuristic method for solving phase retrieval
problems, used the same P; and P, projections, but a
simpler iterative formula:

bnt1 = P(Pi(by)). (22)

This iterative heuristic can also be applied to CDP phase
retrieval problems with modified projection P, given by
Eq. (21). The quality of solutions found by these meth-
ods were measured by the performance metrics presented
in Performance Evaluation section and the findings are
presented in the Results section.

RESULTS

Performance with Real-valued Sample Vectors

Many studies [18, 24, 33] have evaluated phase retrieval
algorithms using images that are real and strictly posi-
tive, represented by two-dimensional matrices. Although
such images offer a convenient test bed, they restrict x
to real values only, whereas real-world diffraction data
are generally complex. Nevertheless, these simple test
cases already reveal key limitations of traditional phase
retrieval algorithms.

For instance, we used the positive real-valued image
depicted in Fig. 2 to construct a CDP-based phase re-
trieval problem with five phase filters. The resulting ob-
servation vector b was then presented to different solvers.
As shown in Fig. 3(a), when GS method began from a
random complex initialization for b, it quickly became
stuck in a local minimum after about 1000 iterations, fail-
ing to reproduce any recognizable features of the original
image. By contrast, starting from the same initial con-
dition, the gain-dissipative system (Fig. 3(c)) followed a
markedly different trajectory and produced significantly
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FIG. 3. Comparison of GS method and gain-based system
performance in recovering a real-valued image. (a) Error evo-
lution and final reconstructed image with GS method starting
from a complex-valued random initial condition whose phase
is uniformly randomly distributed in the range [0,27) and
whose amplitude is the known observation vector b. (b) Er-
ror evolution and final reconstructed image with GS method
starting from an initial condition whose phase is obtained by
multiplying A with a random real-valued vector X, and whose
amplitude is the known observation vector b. (c) Error evo-
lution and final reconstructed image with gain-based method
starting from the exact same initial condition as used in (a).

lower errors, ultimately reconstructing the image with
high fidelity.

We further observed that a priori knowledge of x be-
ing real and positive can substantially simplify phase re-
trieval. For example, by multiplying A with a random
positive real-valued vector X and extracting its phase as
the initial guess for GS, we obtained the error evolu-
tion and final reconstruction depicted in Fig. 3(b). This
carefully chosen initialization, which already exhibits a
lower error than a random complex guess, allowed the
GS method to recover the underlying image. Clearly,

Original Recover

FIG. 4. Phase retrieval with a large-scale sample vector
using the gain-based system. (a) A 180 x 180 pixel grayscale
image of an astronaut (sourced from NASA’s Great Images
Database, public domain). This image is used as the sample
vector in a CDP-based phase retrieval setup with 8 phase
filters, yielding an observation vector b of length 259,200. (b)
The final reconstruction after the gain-based system evolves
for ¢t = 5 from a random initial condition. The resulting RSE
is —9.4 and the ROE is —12.

such information (i.e., that x is non-negative real) makes
the phase retrieval problem more tractable. However,
real-world experimental data generally produce complex-
valued x without providing a straightforward initializa-
tion. Consequently, the GS method often encounters dif-
ficulty in practical scenarios. In the following section, we
therefore focus on more general, complex-valued samples
and benchmark the gain-dissipative solver in that setting.

As a final demonstration using real-valued data,
Fig. 4(a) shows a high-resolution grayscale image of size
180 x 180, totaling 32400 real-valued pixels. Despite this
large problem dimension, the gain-based method success-
fully reconstructs the main features of the image after a
short simulation (duration ¢t = 5), as shown in Fig. 4(b).
Notably, this was achieved without leveraging the fact
that the target sample vector is purely real. While the
final RSE remains moderately high at —8.5, the essential
image structure is clearly recognizable, albeit with visible
background noise.

Although the gain-based method easily solves real-
valued phase retrieval problems, most practical appli-
cations involve recovering complex-valued data. Conse-
quently, the remaining sections focus on benchmark cases
with complex-valued samples to more accurately reflect
real-world experimental conditions.

Performance with Random Complex-valued Sample
Vectors

We begin by investigating the reconstruction of a
complex-valued image that can potentially be produced
in an experiment: a two-dimensional vortex, where the
vortex flow is given by the gradient of phase at each point
in a plane. The field value at each point can be approxi-
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FIG. 5. Phase retrieval of a two-dimensional vortex in the
presence of noise, comparing RRR and the gain-based sys-
tem. (a) Each panel displays the reconstructed sample vector
%X, where the grayscale image encodes amplitude and the color
image encodes phase. For each noise level, both RRR and
the gain-based method start from the same initial condition.
Here, RRR runs for 10,000 iterations, while the gain-based
system is evolved to t = 1,000. (b) The ground-truth sam-
ple vector x that describes a 2D vortex, showing amplitude
(left) and phase (right). (c) Phase retrieval error (RSE) ver-
sus the signal-to-noise ratio (SNR). Each data point repre-
sents the average of 20 random instances, where the vortex
core is placed at different positions and each algorithm is ini-
tialized randomly. Error bars denote the standard deviation
of the final RSE values.

mated by:

(iE —.’Eo) +Z(y—y0) , (23)
(x —20)* + (y — 50)* + &

where (29, yo) is the centre of the vortex and ¢ is the size
of the vortex core [44]. The amplitude, |v| (greyscale)
and phase of the vortex arg(v) (color) can be visualised
as shown in Fig. 5(b).

In most practical experiments, the observed ampli-
tudes b deviate from the ideal measurements b due to

v(x,y) = \/
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FIG. 6. Phase retrieval from random complex-valued sam-

ples. (a) Phase retrieval error (RSE) produced by the RRR
method (dashed lines) and the gain-based system (solid lines)
as a function of noise in the measured amplitudes. At each
noise level, 20 random complex samples were generated, each
with 100 elements whose amplitudes are uniformly distributed
in [0,1) and phases in [0, 27). The resulting observation vec-
tors were then used for both methods. Vertical error bars in-
dicate the standard deviation in RSE across the 20 trials. (b)
Phase retrieval error (RSE) versus the dimensionality of the
sample vectors, comparing medium noise (SNR = 30, shown
in blue) and low noise (SNR = 50, shown in orange). Solid
lines again correspond to the gain-based system, and dashed
lines correspond to RRR. Each data point represents the av-
erage RSE over 20 distinct random instances of the specified
dimension, with error bars indicating the standard deviation.

noise. As illustrated in Fig. 5(a), both the RRR and
gain-based solvers were presented with noisy observa-
tions of varying magnitude. In the high-noise regime
(small SNR values), neither method recovered a solution
close to the original sample x, shown in Fig. 5(b). Un-
der moderate noise (SNR ~ 20), the RRR reconstruction
exhibited pronounced amplitude distortions, whereas the
gain-based solver produced a visually accurate approxi-
mation of x. This improvement is reflected quantitatively
by the lower RSE values achieved by the gain-dissipative
method, a performance gap that persists until around
SNR ~ 40. Above this threshold, the visual differences
between the two solvers diminish, although residual dis-
crepancies in ROE and RSE remain. Figure 5(c) sum-
marizes the impact of noise on reconstruction accuracy,
revealing that the gain-based approach and RRR per-
form similarly in the high-noise (SNR < 10) and low-
noise (SNR > 40) regimes. Notably, however, the gain-
dissipative solver holds a distinct advantage in the in-
termediate range 10 < SNR < 40, where the difference
in RSE is both statistically and visually significant. In
these conditions, the gain-dissipative system often recov-
ers important structural details that RRR loses in noise.

While the two-dimensional vortex example provides
instructive insight into solver behavior at various noise
levels, it remains a highly structured sample. To assess
robustness on less structured data, we next consider un-
structured samples x, whose amplitudes are drawn uni-
formly from [0,1) and phases from [0, 27). Keeping the



dimensionality fixed and varying the noise level, we com-
pared the RRR and gain-based methods, as summarized
in Fig. 6(a). The results largely mirror the vortex case:
in the medium-noise regime, the gain-based solver attains
markedly lower RSE than RRR, whereas both methods
perform comparably under very high (SNR < 10) or very
low (SNR > 40) noise. These findings indicate that the
gain-based approach handles both structured and un-
structured samples effectively, consistently outperform-
ing RRR in the medium-noise band. Moreover, its RSE
increases in tandem with SNR, suggesting stable perfor-
mance across different noise levels.

All of the above tests involved samples of size 100.
However, realistic applications typically require recover-
ing much larger vectors. To explore how solution ac-
curacy scales with dimensionality, Fig. 6(b) plots RSE
against problem size for medium-noise (SNR = 30, in
blue) and low-noise (SNR = 50, in orange) conditions,
comparing the gain-based method (solid lines) and RRR
(dashed lines). In both noise regimes, the RSE remains
nearly constant even as the number of sample elements
grows by a factor of four. This suggests that noise level
influences the gain-based solver’s performance more than
the underlying problem dimension.

To illustrate how the gain-based method can recover
phase information in cold-atomic Bose—Einstein conden-
sate (BEC) experiments, where topological defects like
solitons [45], vortex lines [46], and vortex rings [47, 48]
naturally appear, we consider reconstructing a three-
dimensional complex vortex ring. The sample vector is
specified by

o(r0,2) = Lotz (24)

N Ty

where (7,0, z) are cylindrical coordinates, rg is the ring’s
radius, and ¢ is the vortex-core size. Figure 7(a) shows
an isosurface at 94% of the maximum amplitude, with
phase isolines superimposed. The vortex flow, which is
orthogonal to these lines, winds along the ring.

We construct a CDP phase retrieval problem from this
3D complex-valued vector (3087 elements) and solve it
using the gain-based system. Figure 7(b) charts the time
evolution of the retrieval error, while panels (¢)—(f) depict
snapshots of the reconstructed three-dimensional field at
various stages. By the final state, the key vortex-ring
features closely match the original, indicating that, with
non-destructive CDP measurements, the gain-based ap-
proach can accurately recover the phase of 3D wavefunc-
tions in BEC systems.

CONCLUSION

We have shown that the Coded Diffraction Pattern
variant of phase retrieval can be rigorously reformulated

(@ T Ta— () o]
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FIG. 7. Three-dimensional vortex ring reconstructed using
the gain-based phase retrieval method. (a) Original vortex
ring, visualized as an isosurface at 30% of its maximum am-
plitude. Phase isolines on this surface are colored according to
their phase values, ranging from —7 to 7. (b) Time evolution
of the phase retrieval error (RSE and ROE) under gain-based
dynamics. (c¢)—(f) Snapshots of the reconstructed vortex ring
att =>5,t =10, t = 25, and t = 500, respectively, illustrating
the progressive refinement of amplitude and phase in three
dimensions.

as an XY Hamiltonian minimization problem, paving the
way for direct solution by gain-based oscillator networks
and related physics-inspired systems. Through numeri-
cal tests, we demonstrated that such gain-based dynam-
ics significantly outperforms the state-of-the-art Relaxed-
Reflect-Reflect algorithm, particularly under medium-
level noise (SNR values between 10 and 40 dB). Our find-
ings hold for both structured data (e.g., two-dimensional
vortices and three-dimensional vortex rings) and unstruc-
tured complex-valued data with random amplitudes and
phases.

Critically, we observed that the superior accuracy of
the gain-based solver remains robust even as problem
sizes grow. This scalability, combined with its noise re-
silience, indicates strong potential for large-scale real-
world imaging tasks. Moreover, the gain-based approach
can be physically realized in optical, polaritonic, or other
nonlinear oscillator networks, thereby offering a hard-
ware platform for rapid, energy-efficient phase retrieval.



Such physical devices could perform continuous, paral-
lel searches for global minima in the XY energy land-
scape, transforming this theoretical advantage into prac-
tical gains for real-time imaging and beyond.

Our results open a promising direction in the devel-
opment of continuous-variable “XY machines,” enabling
them to tackle large and noisy phase retrieval instances
that arise in a variety of scientific and industrial settings.
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