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We investigate how to reliably remove unwanted global phase windings in gain-based optical oscil-
lator networks, thereby ensuring convergence to the true synchronized configuration corresponding
to the XY Hamiltonian’s global minimum. Focusing on one-dimensional rings and two-dimensional
toroidal lattices, we show that two key strategies greatly enhance the probability of reaching the
defect-free state. First, operating at a low effective injection rate just above threshold, exploits the
amplitude degree of freedom, allowing the system to form transient zero-amplitude holes: instantons
in one dimension, or vortex-antivortex rarefaction pulses in two-dimensional space, that enable phase
slips. Second, preparing the initial condition with amplitude or phase inhomogeneities can directly
seed these amplitude collapses and prevent the system from getting trapped in higher-energy states
with nonzero winding. Using the Stuart–Landau and Ginzburg–Landau equations as models for
fast-reservoir lasers, we derive analytic and numerical evidence that even relatively minor amplitude
dips can trigger global unwinding. We further demonstrate that the pump’s slow annealing favours
these amplitude-driven events, leading to improved success in finding the globally coherent ground
state. These findings highlight the critical role of amplitude freedom in analogue solvers for XY
optimization problems, showing how local amplitude suppression provides a direct route to ejecting
topological defects.

I. INTRODUCTION

There is a growing interest in leveraging physics-
inspired computing platforms based on networks of os-
cillators, including laser arrays, polariton condensates,
and other nonlinear systems, to tackle complex optimiza-
tion and dynamical problems [1–10]. Instead of relying
solely on conventional digital algorithms, these analogue
computing approaches exploit the collective nonlinear dy-
namics of physical devices. Each oscillator in such net-
works can act as a “computational bit,” whose phase and
amplitude evolve under mutual coupling in a manner
that naturally explores the energy landscape of a tar-
get Hamiltonian. Systems ranging from degenerate op-
tical parametric oscillators and polariton condensates to
metallic nanolaser networks have been demonstrated to
minimize effective spin Hamiltonians (e.g., Ising or XY),
guiding the network into phase-locked steady states that
correspond to low-energy solutions [4, 7, 11]. Since many
NP-hard problems can be mapped onto XY- or Ising-
type models with only polynomial overhead [12], these
oscillator-based physical solvers offer a novel and promis-
ing route to exploring complex optimization tasks.

Beyond potential computing applications, coupled os-
cillator systems also serve as paradigmatic models of
emergent collective behaviour in physics, biology, and
engineering [13, 14]. Their universal features, such as
phase locking, synchronization transitions, defect forma-
tion, and pattern selection, capture essential elements of
coordination in real-world networks, from power grids to
neuronal circuits. In particular, gain-dissipative oscil-
lator arrays such as class-B lasers or exciton-polariton
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condensates mimic the rich phenomenology of nonlinear
media and have been used to observe spontaneous syn-
chronization, vortex formation, and other nonequilibrium
phase transitions [15–18]. Their dynamical behaviours
often go far beyond what simpler phase-only (Kuramoto-
like) models can capture, underscoring the importance
of retaining both amplitude and phase variables to un-
derstand phenomena relying on the amplitude-induced
defect healing.

Among the many possible network geometries, the ring
topology (periodic boundary conditions) provides a par-
ticularly clean and symmetric platform for studying syn-
chronization and topological effects [14, 18]. A ring of N
oscillators eliminates boundary inhomogeneities and al-
lows for uniform coupling around a closed loop. Despite
its conceptual simplicity, such a ring can sustain a wealth
of nontrivial phase patterns, ranging from the globally in-
phase state to travelling waves and splays (twisted) states
characterized by a nonzero winding number or topologi-
cal charge. These winding states correspond to configu-
rations in which the total phase around the loop incre-
ments by 2πq (for integer q), thereby creating topological
defects associated with that phase gradient. Such twisted
states can be stable over a broad parameter range and
may represent local minima in the system’s energy-like
landscape, impeding convergence to the fully synchro-
nized (lowest-energy) state.

A foundational theoretical tool for understanding ring
oscillator synchronization is the Kuramoto phase model.
In the classic all-to-all version, each oscillator i is de-
scribed by a single phase θi(t) evolving according to

θ̇i = ωi +
K

N

N

∑
j=1

sin(θj − θi),

where ωi is the natural frequency of oscillator i, K is the
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global coupling strength, and N is the total number of
oscillators in the network. This model famously exhibits
a transition from incoherence to synchronization when
K surpasses a critical threshold. On a ring with identi-
cal oscillators and only nearest-neighbour coupling, one
modifies the coupling term to sum over the two neigh-
bours of each oscillator; for instance,

θ̇i = ω +
K

2
[sin(θi+1 − θi) + sin(θi−1 − θi)],

where θi±1 refers to neighbors of θi in a ring of size
N , and indices are taken modulo N . Despite this ap-
parently simple one-dimensional topology, the ring Ku-
ramoto system can sustain multiple phase-locked pat-
terns such as the uniform in-phase solution, travelling
waves, and splay states where the phase increments by
a constant amount from one oscillator to the next. Ex-
tensions of the basic model, such as adding a phase lag
(Sakaguchi–Kuramoto), time delays, or frequency disper-
sion, further enrich the dynamical repertoire [14, 19].
Nevertheless, since the Kuramoto model fixes the am-
plitude of each oscillator, it cannot capture mechanisms
in which local oscillations vanish, enabling phase slips
that unwind a topological defect.

Quantum many-body models provide another view-
point. The Bose–Hubbard model, for instance, describes
bosons on a lattice with tunnelling and on-site interac-
tions [20]. On a one-dimensional ring, it supports both a
superfluid phase, in which each site has a well-defined co-
herent amplitude and phase, and a Mott insulator phase,
in which phase coherence is lost. At the mean-field level,
this reduces to a discrete nonlinear Schrödinger equation
that also exhibits ring-specific effects such as quantized
winding in the condensate phase. Josephson junction
arrays and discrete atomic Bose-Einstein condensates in
ring traps have experimentally realized these ideas, re-
vealing how phase coherence and winding can arise or
dissipate depending on tunnelling, interactions, and dis-
sipation [13].

More generally, amplitude-phase oscillator models such
as the Stuart–Landau system and the complex Ginzburg–
Landau equation go beyond the phase-only picture by al-
lowing each oscillator’s amplitude to vary [19]. In rings
of Stuart-Landau oscillators, splay states can undergo
amplitude-driven instabilities, leading to phase slips or
richer chaotic dynamics. This amplitude degree of free-
dom is crucial for understanding how a topological defect
can heal since it is often during an amplitude collapse
that the phase becomes undefined and can jump by 2π.

Returning specifically to lasers, a salient example is the
class-B laser network, where each oscillator is governed
by a complex field ψm and a real-valued gain Gm. The
equations are

dψm

dt
=
Gm − αm

τp
ψm + iΩm ψm + ∑

n

κmn

τp
ψn, (1)

dGm

dt
=

1

τc
(Pm −Gm (∣ψm∣

2
+ 1)), (2)

Figure 1. (a) A schematic diagram of a ring of N identical
lasers with uniform ferromagnetic nearest–neighbour coupling
κ > 0 (non-zero only between adjacent sites); the coordinate x
indexes the lasers around the ring. (b) Steady state for N = 8:
amplitudes ∣ψ∣ (×) and phases argψ (+) trace a uniform 2πq
twist (shown for q = 1).

where αm, Ωm, and κmn respectively denote the linear
loss, detuning, and coupling strength, while τp and τc are
characteristic timescales for photon and population dy-
namics, and Pm is the pumping rate. In a ring geometry
with uniform nearest-neighbour coupling (κmn = κ > 0
for neighbours), these equations can admit steady-state
solutions with nonzero winding number q, referred to as
phase-winding or twisted states as shown in Fig. 1. Al-
though such configurations lie above the global minimum
in energy, experiments and simulations in coupled laser
arrays and polariton rings confirm that they can form
spontaneously and persist [21–24].

Experiments and simulations have shown that these
phase-winding solutions do indeed occur in the context
of laser and polariton networks. For instance, the in-
vestigation of the formation of topological defects in a
one-dimensional ring of class-B lasers was performed in
[21, 22], while higher-charge phase windings in polari-
ton condensates arranged in a ring were demonstrated
in [23]. In such gain-dissipative systems, any nonzero-
winding steady state constitutes an excited state that
lies above the global minimum in energy. However, the
mechanism by which an initially prepared twisted (splay)
configuration unwinds, reducing its winding number to
zero and thereby reaching the fully synchronized ground
state, depends crucially on the amplitude dynamics. In
contrast, a purely phase-based Kuramoto model is of-
ten unable to heal topological defects, leaving a nonzero-
winding state “stuck” if the phase slip events required for
unwinding cannot occur [21].

Importantly, recent experimental works highlight that
amplitude degrees of freedom can facilitate the decay of
topological defects [21, 24], but the exact reasons were
not identified. We elucidate the process of unwinding
and show that by allowing local oscillators to drop their
amplitude temporarily, the system can create a phase slip
event that changes the winding number—an effect absent
in simpler constant amplitude or Kuramoto-like models.

Connections to the Kibble–Zurek mechanism have also
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been proposed, identifying competing timescales for am-
plitude equilibration and phase ordering; if amplitude
fluctuations remain “active” (like an effective thermal
bath) longer than the time needed for phase informa-
tion to spread, defects can be “pushed out” of the system
[17, 21].

Motivated by both fundamental and practical con-
cerns, we, therefore, seek a clearer picture of how an
initial splay state (i.e., a nonzero-winding configuration)
can unwind to the globally synchronized state in ring
oscillator networks. This question resonates across ap-
plications: in oscillator-based computing, one requires
that any unwanted phase twist not trap the system in
a local minimum, preventing the identification of a true
ground-state solution [25, 26]. Similarly, controlling and
eliminating phase defects is often essential for stable op-
eration in coherent light generation or advanced photonic
devices [27].

In this paper, we elucidate a mechanism by which topo-
logical defects dissipate in an optical ring network mod-
elled by Stuart–Landau equations and laser rate equa-
tions. Our analysis bridges nonlinear dynamics and laser
physics, clarifying how amplitude instabilities in the ring
geometry can trigger phase slips (often referred to as in-
stantons in the space-time diagram [28–31]). As visual-
ized in Fig. 2, these defects can nucleate in the ampli-
tude degree of freedom, induce a discrete jump in wind-
ing number, and thereby allow the system to evolve into
the zero-winding, fully synchronized ground state. Our
focus is on systematically revealing the dynamical path-
ways and parameter regimes that enable such unwinding.
By clarifying how phase gradients can be neutralized in a
realistic model that retains amplitude dynamics, we pro-
vide insights relevant to the design of gain-based oscil-
lators capable of escaping local minima. Ultimately, un-
derstanding this defect-healing process helps understand
synchronization and the role of topology in complex os-
cillator networks, with implications ranging from funda-
mental studies of pattern formation in nonlinear media to
practical implementations of oscillator-based computing.

Moreover, while much of our analysis focuses on a
one-dimensional ring, in Section IV, we show how these
ideas naturally extend to two-dimensional toroidal ge-
ometries. In that setting, collision events involving
vortex–antivortex pairs produce rarefaction pulses that
are low-density fronts analogous to the 1D dark soliton
[32], that can span the entire domain and enable global
2π phase slips. This highlights a unifying role of ampli-
tude freedom across different topologies and dimensions,
reinforcing the conclusion that allowing local amplitude
collapses is key to dissolving topological constraints in
gain-based networks.

Our paper is arranged as follows. In Sec. II, we
present the mathematical model that features the for-
mation of the instantons. In Sec. III, we provide nu-
merical results demonstrating the process of instanton
formation and the unwinding of topological defects. Sec-
tion IV addresses the 2D toroidal extension and explains

Figure 2. Space–time plot of the phases of a 100-laser ring
evolved with Eqs. (1)–(2) using an adaptive RK4 scheme.
Parameters: τp = 10−3, τc = 50, Ωm = 0, nearest-neighbour
κ = 10−3, and αm = 2.01 × 10−3. The vertical axis is the site
index, the horizontal axis is time, and hue encodes the phase
modulo 2π. An instanton (vortex) nucleates at t≈17, erasing
the initial 2π winding and letting the system relax to the
uniform ground state. Initial amplitudes were ≈ 0 with a 2π
phase twist.

how vortex–antivortex collisions enable analogous global
phase slips in higher dimensions. Finally, in Sec . V, we
summarise our findings and discuss the implications of
our results for optical hardware-based optimisation.

II. MATHEMATICAL MODELS

A. From Stuart–Landau Lattices to Continuum
Ginzburg–Landau Equations

In this subsection, we demonstrate how a discrete laser
network in one or two dimensions reduces to a continuum
Ginzburg–Landau equation under smoothness assump-
tions.

We first consider an optical system with a fast relax-
ing reservoir, such as class-A or class-C lasers, so that
the reservoir equation (2) is effectively in a steady-state
regime. Under this assumption, substituting the reser-
voir’s algebraic solution for Gm back into the laser equa-
tions simplifies them to

dψm

dt
=

1

τp

⎛

⎝

Pm

∣ψm∣
2 + 1

− αm

⎞

⎠
ψm + ∑

n

κmn

τp
ψn, (3)

where iΩm ψm in (1) was absorbed into a rotating-frame
phase for ϕm, assuming uniform or small detuning. We
focus on a regime in which the pumping term can be
Taylor expanded to the lowest order in ∣ψm∣

2, yielding
the Stuart-Landau equation

dψm

dt
= (

Pm − αm

τp
−
Pm

τp
∣ψm∣

2
)ψm + ∑

n

κmn

τp
ψn. (4)

The saturable nonlinearity term (Pm/τp) ∣ψm∣
2 restricts

unlimited amplitude growth even for large pumping Pm.
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Defining

ϕm =

√
Pm

τp
ψm, γ =

Pm − αm

τp
, Jmn =

κmn

τp
, (5)

we reduce the system to

dϕm
dt
= (γ − ∣ϕm∣

2)ϕm + ∑
n

Jmn ϕn. (6)

Here, γ is the effective linear gain/loss parameter, and
Jmn encodes the oscillator coupling. Hence Eq. (6) cap-
tures the essential gain-saturation and coupling dynam-
ics.

Because each oscillator’s phase θm in Eq. (6) can be
mapped onto an XY spin, this Stuart-Landau system
can effectively minimise an XY-like Hamiltonian. In
particular, the ground state of the network with the
uniform amplitude corresponds to the global minimum
of an XY spin energy. More concretely, interpreting
ϕm = ∣ϕm∣ e

iθm , we see that mutual coupling attempts
to align phases {θm} across neighbouring sites as to min-
imize Hxy = −

1
2 ∑

N
n,m cos(θn − θm), while the amplitude

term (γ − ∣ϕm∣2)ϕm saturates each oscillator at a near-
constant magnitude. Thus, when the system converges
to its steady state under the gain-based dynamics, it is ef-
fectively “solving” the problem of synchronizing phases in
an XY spin network, which is a framework that underlies
several optical, laser and polaritonic Ising/XY machines
proposed for combinatorial optimization [4, 7, 10, 33]. In
this sense, preventing (or annihilating) undesired phase
windings becomes essential since any nontrivial winding
is a higher-energy state of the XY Hamiltonian. The
following sections demonstrate precisely how amplitude
freedom mediates the removal of such topological defects,
thereby ensuring that the network can locate the correct
(fully coherent) ground state.

Nearest-neighbour couplings. In the subsequent anal-
ysis, we consider ferromagnetic nearest-neighbour cou-
plings that approximate a discrete Laplacian on 1d or
2D lattices. For a 1D ring of N oscillators so that
each oscillator is coupled to the nearest neighbours with
Jnm = l

−2 > 0, for a small real parameter l > 0 with
periodic boundary (ϕN+1 ≡ ϕ1). In 2D, we consider an
Nx × Ny square lattice with spacing l, where each site
(i, j) couples to its four neighbors (i ± 1, j) and (i, j ± 1)
by 1/l2. We define a shifted gain parameter µ by:

µ = γ + {
2
l2
, (1D),

4
l2
, (2D).

These definitions conveniently rewrite the coupling terms
in a form reminiscent of (µ − ∣ϕ∣2)ϕ plus discrete second
differences. To see this, regard ϕm(t) as ϕ(xm, t) at xm =
ml. Under smoothness assumptions,

ϕm±1(t) ≈ ϕ(x ± l, t) = ϕ(x, t) ± l ∂xϕ + l2

2
∂2xxϕ +⋯

Figure 3. (a) Constant-amplitude steady states: amplitude
∣ϕ∣ and phase argϕ for topological charges q = 1 (solid)
and q = 2 (dashed). (b) Instanton state: an amplitude
dip to zero accompanied by two equivalent phase render-
ings—solid curve showing a 2π twist, dashed curve showing
no net twist—demonstrating a continuous, zero-energy path
that links distinct winding sectors.

so that ϕm+1 − 2ϕm + ϕm−1 ≈ l2 ∂2xxϕ, Eq. (6) yields the
1D complex Ginzburg–Landau equation

∂ϕ

∂t
= (µ − ∣ϕ∣2)ϕ + ∂2xxϕ, x ∈ [0, L], (7)

where L = N l is the total ring circumference.
Next, for a 2D square lattice of size Nx × Ny, each

site (i, j) has four neighbors (i ± 1, j) and (i, j ± 1)
with coupling 1/l2. The discrete Stuart–Landau equa-
tion Eq. (6) in continuous limit then becomes the 2D
complex Ginzburg–Landau equation

∂tϕ(x, y, t) = (µ − ∣ϕ∣
2)ϕ + ∆ϕ, (8)

with (x, y) ∈ [0, Lx] × [0, Ly]. Here Lx = Nx l and Ly =

Ny l with periodic boundary conditions to model a torus.
So in both one and two dimensions, nearest-neighbour

Stuart–Landau lattices reduce in the continuum limit to
Ginzburg–Landau equations Eq. (8) with µ = γ+2/l2 (1D)
or µ = γ + 4/l2 (2D). The continuum Ginzburg-Landau
equations thus offer a tool for studying defect formation,
annihilation, and the conditions under which the system
converges to a globally synchronised or vortex-free state.

B. Stationary Solutions of the Continuous Model
in 1D

The first stationary solution that satisfies the periodic
boundary conditions is the constant amplitude solution
of the form:

ϕ(x) = Ae2πqi
x
L , (9)

where q is an integer (topological charge).
Substituting Eq. (9) into Eq. (8), we obtain a condition

on µ:

µ = A2
+ (

2qπ

L
)

2

. (10)
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Figure 4. Analytic energy curves E(µ) for a constant -
amplitude solutions for the ring of circumference L = 100.
Branches with fixed topological charge (q = 1,2 shown) orig-
inate at their respective thresholds µ = (2πq/L)2, while the
instanton branch exists for all µ > 0.

This implies that any µ < ( 2qπ
L
)
2

cannot support a con-
stant amplitude solution with topological charge q.

If we consider Eq. (8) to be a gradient descent dynam-
ics of the form

∂ϕ(x, t)

∂t
= −

∂E

∂ϕ∗
, (11)

then the energy functional E of the system is defined as

E[ϕ] = ∫ ∣
∂ϕ

∂x
∣

2

+
1

2
(µ − ∣ϕ∣

2
)
2
dx . (12)

By substituting Eq. (9) and Eq. (10) into Eq. (12), the
energy of the constant-amplitude stationary solution can
be calculated analytically as:

E = (
2qπ

L
)

2

(µ −
1

2
(
2qπ

L
)

2

)L . (13)

The energy E is a linear function of µ, and greater topo-
logical charge leads to solutions with higher energy at
any given µ, as shown in Fig. 4.

To construct a second stationary solution with 2π
winding in the periodic domain, we consider ϕ(x) =

a(x)eib(x) with b(x − L/2) = b(x + L/2) + 2π, a(0) = 0,
and a(x) approaches the constant as x → ±L/2. Sub-
stituting into Eq. (8) and separating real and imaginary
parts gives

0 = (µ − a2)a + a′′ − a(b′)2,
0 = 2a′b′ + b′′. (14)

Since a(x) approaches a constant away from its deple-
tion, b(x) is a constant or a linear function there as
follows from the second equation of Eqs. (14). If b(x)
is a constant function in these two limits, then to sat-
isfy the boundary conditions on the winding, we get

b(x) = 2πH(x), where H(x) is the Heaviside step func-
tion. Combining this with the solution on a(x) gives

ϕ(x) = −
√
µ tanh(

√
µ

2
x)eiπH(x) . (15)

Assuming L is sufficiently large that ϕ(x) approaches
a constant value everywhere far from x = 0, the energy of
this solution (Eq. (12)) is given by:

E =
4
√
2

3
µ

3
2 . (16)

Function ϕ(x) has constant phase everywhere except
x = 0 where it experiences a phase jump of 2π, as shown
in Fig. 3(b). Hence, this solution can be considered as
having a phase winding of 2π. However, it can also be
equivalently considered as having no phase change at
x = 0 at all, and then it can be regarded as having no
phase winding. This means that this phase jump by 2π
provides a pathway for a discrete topological charge to
change from 1 to 0 without any abrupt jump in energy.
In other words, the topological defect with charge 1 de-
generates with the globally coherent state with charge
0 at this point. Hence, if the dynamics of the system
passes through this point, then the system can unwind
the initial phase winding by 2π. In order for phase of
ϕ(x, t) at a point to jump abruptly(by 2π in this case)
without going through any energy barrier, the amplitude
of ϕ(x, t) at this point must be 0 so that all phases are
degenerate. Indeed, this is the most important feature
of this stationary solution - the occurrence of zero ampli-
tude and 2π phase shift at the same point - a formation
of an instanton.

In Sec. III A, we present the numerical evidence of such
an unwinding mechanism to decrease the non-zero topo-
logical charge of a random initial condition.

C. Parametrised Initial Conditions

To understand the basins of attraction of the above
two stationary solutions, one can remove the parameter
µ from the dynamical equation for the ϕ field (Eq. (8))
by defining:

t̃ =µt ,

x̃ =
√
µx ,

ϕ̃ =ϕ/
√
µ ,

(17)

which reduces Eq. (8) to:

∂ϕ̃(x̃, t̃)

∂t̃
= (1 − ∣ϕ̃∣2)ϕ̃ +

∂2ϕ̃

∂x̃2
, (18)

and the equivalent energy functional is given by:

Ẽ[ϕ̃] = E[ϕ]/µ
3
2 . (19)
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Figure 5. Instanton-mediated unwinding vs. persistent winding in a 1-D Ginzburg–Landau ring. (a) Evolution of ∣ϕ∣ (top)
and argϕ (bottom) for µ = 0.002 < µmin

q=1 : an instanton nucleates (local ∣ϕ∣ = 0 and 2π phase jump), erasing the initial twist and
relaxing to the uniform ground state. (b) Same initial state but µ = 0.01; the q = 1 branch is allowed, no instanton forms, and
the system converges to the constant-amplitude twisted solution. (c,d) Space–time phase maps for cases (a,b); the instanton
in (c) appears at t ≈ 40, whereas the 2π winding persists in (d). Simulations integrate Eq. (8) on a ring of length L = 100 (200
points) with adaptive 4th-order Runge–Kutta; initial amplitudes ∣ϕ∣ ∈ [0.1,0.2] (smoothed) and linear phase θ(x,0) = 2πx/L.

The advantage of considering Eq. (18) is that the re-
sult of the dynamical evolution now depends entirely on
the initial conditions, namely the amplitude and phase
profiles of the initial state, and does not depend on some
arbitrary externally controlled parameter µ any more.

In numerical tests, we can now parametrise the initial
condition ϕ̃(x̃, t̃ = 0) = A(x̃)eiθ(x̃):

A(x̃) =
e∣x̃∣ + d
e∣x̃∣ + 1

A0 , (20)

where −1 ≤ d ≤ 1 is a parameter that determines how
deep the drop of the amplitude at x̃ = 0 is and A0 is a
constant amplitude factor that will influence the energy
Ẽ[ϕ̃] of the initial state. When d = 1, the amplitude is
constant for all x̃, and when d = −1, the amplitude drops
to 0 at x̃ = 0. We also introduce a finite sized phase jump
∆θ at x̃ = 0 parametrised by β

∆θ = βπ , (21)

where 0 ≤ β ≤ 1. The initial phase always winds by 2π
around the whole ring. When β = 0, the initial phase
winds linearly around the ring without any phase jump.
When β = 1, the initial phase first increases linearly, then
jumps by π at x̃ = 0, and then continues to increase lin-
early such that the overall phase winding is still 2π. A
maximum phase jump of π is considered here because any
phase jump ∆θ > π is equivalent to a phase jump in the
other direction with magnitude 2π −∆θ, and will corre-
spond to an initial condition with no initial phase wind-
ing. The two parameters (d, β) now continuously con-
nect two topologically different solutions: the constant-
amplitude solution has d = 1 and β = 0, while the instan-
ton solution has d = −1 and β = 1.

Figure 6. Trajectories during the dynamical evolution of
Eq. (8) on the E–µ plane. (a) Fixed-µ simulations from
Fig. 5: µ = 0.002 (green) falls below the q = 1 branch (black
dashed), nucleates an instanton (×) and relaxes to the ground
state E = 0; µ = 0.01 (red) lands on the q = 1 excited branch
(orange dashed). Inset: zoom confirms the instanton en-
ergy agrees with the analytic value from Sec. II B. (b) Linear
ramps µ(t) ∶ 0→0.01 from the same initial state: slow anneal
(T = 50, solid) triggers an instanton (×); fast anneal (T = 25,
dashed) does not.

In Sec. III B, we present the numerical results to show
the region in this parameter space where the constant-
amplitude or the instanton solution will arise.

III. NUMERICAL RESULTS

A. Examples of Instanton Formation

We initialize the ring with random amplitudes and a
linear 0 → 2π phase ramp. Figure 5 contrasts two nu-
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Figure 7. Evolution of ∣ϕ∣ (top) and argϕ (bottom) for Eq. (8) with fixed µ = 0.04. The initial amplitude matches the analytic
instanton profile, while the phase is linear except for a 4

5
π jump at x = 100, coinciding with the zero-amplitude point. An

instanton nucleates at this site, converting the initial twist to zero winding; panels 3–4 show the state immediately before and
after the event.

merical evolutions of Eq. (8) that differ only in the gain
parameter µ: Above threshold (µ > (2π/L)2, panel (b)):
the constant-amplitude q = 1 branch exists, so the en-
ergy decays until it reaches this excited branch and re-
mains there. Below threshold (µ < (2π/L)2, panel (a)):
the q = 1 branch is absent, so the energy keeps falling.
An instanton nucleates, removes the 2π twist, and the
system relaxes to the defect-free ground state. Thus, a
modest reduction in µ switches the long-time attractor
from the excited q = 1 state to the true ground state via
an instanton-mediated phase slip.

Figure 6(a) plots the dynamical evolution according to
Eq. (8) on (E,µ) plane. For large gain (red curve), the
trajectory terminates on the q = 1 branch, so E cannot
drop further. For small gain (green curve), the system
slides beneath that branch; at the point marked × an
instanton appears, the amplitude locally vanishes, a 2π
phase slip occurs without an energy jump, and the trajec-
tory reaches E = 0. No fine-tuned initial state is required
because the instanton forms spontaneously from generic
noisy data.

The space–time maps in Fig. 5(c,d) starkens the con-
trast. In the dynamical evolution for small µ [Fig. 5(c)],
the amplitude profile develops a local dip to ∣ϕ∣ = 0 and an
accompanying 2π phase jump (an instanton) after which
the twist rapidly vanishes. For the larger gain [Fig. 5(d)],
the amplitude never vanishes, no slip occurs, and the ini-
tial winding persists. Crucially, the random initial state
has spatial amplitude fluctuations; rather than averag-
ing out, one of these depressions can deepen to zero and
trigger the slip.

Many implementations vary the gain parameter in time
(annealing) rather than keeping it fixed [4, 5, 7, 8]. A
slow ramp is known to boost the success rate of Ising/XY
machines [26, 34], and Fig. 6(b) confirms the same mech-
anism here. Two dynamical evolutions of Eq. (8) start
from identical states and share the same initial and final
µ, but the slow schedule (total time 50) dwells longer in
the low-µ regime, allowing an instanton to nucleate; the
fast schedule (total time 25) does not, and the system
remains on the excited branch. Hence, gentle annealing,
by keeping µ small for longer, facilitates instanton for-
mation and greatly increases the likelihood of reaching
the ground state.

All previous numerical simulations started from a
near–uniform amplitude with a linear 2π phase ramp.

Figure 8. (a) Space–time phase map for the run of Fig. 7;
an instanton forms shortly after t = 0, removing the initial 2π
twist.(b) Energy trajectory for the same run (arrow indicates
forward time). The instanton event (×) bridges to the E = 0
defect-free ground state.

Figure 7 explores a contrasting initial state: the ampli-
tude is the instanton profile of Sec. II B (zero at one
site), but the phase is linear everywhere except for an
abrupt 4

5
π jump at that same site. This pre-imposed

amplitude dip seeds an instanton so effectively that it
appears even at the much larger gain µ = 0.35 (third and
fourth panels). The event links the 2π-wound state to the
zero-winding state without an energy barrier, because the
phase slip occurs exactly where ∣ϕ∣ = 0. Notably, the dip
first partially refills before collapsing to zero and trig-
gering the 2π jump, illustrating that the instanton need
not form immediately but is all but inevitable once a
zero-amplitude site is present.

The evolution of the phase distribution is shown in
Fig. 8(a), where we can clearly observe the formation of
an instanton early in the dynamics. From this point on-
ward, phase variations across the ring start to smooth
out, and the system eventually adopts the q = 0 defect-
free state. From Fig. 8(b), one can observe that the tra-
jectory crosses the q = 1 excited state without becoming
trapped. This is because the instanton is formed before
its energy crosses the energy q = 1 excited state, as shown
by the location of the cross in Fig. 8(b). Anywhere on the
trajectory below the cross, the system has no phase wind-
ing, so the system is separated from the excited state by
a discrete non-zero topological charge. This means that
even as it passes through the E(µ) line given by the q = 1
excited state, it is impossible for the system to become
trapped into this excited state any more.
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Figure 9. Probability of instanton formation for the scaled
Eq. (18) as a function of the parameters that define the initial
state. (a) Heat map in the (β,A0) plane with the dip-depth
fixed at d = 0 (the amplitude falls to A0/2 at x = 0). (b) Heat
map in the (d, β) plane with the overall amplitude factor fixed
at A0 = 0.5. Here d spans its entire admissible range, while
β is limited to 0 ≤ β ≤ 0.5 because larger jumps always trig-
gered an instanton. For each grid point 20 realisations were
generated by adding uniform phase noise in [−π/10, π/10] to
the prescribed initial profile; colour encodes the fraction of
runs that produced an instanton. All simulations used a ring
of scaled length L̃ = 10, corresponding to the unscaled L em-
ployed in Sec. IIIA.

B. Region of Instanton Formation

Given that the two initial conditions considered above
behaved very differently, we now seek to understand
if the difference stems from the difference in the ini-
tial amplitude profile or the initial phase profile. Us-
ing the parametrisation given in Eq. (20) and Eq. (21),
we can specify an initial condition by a set of parameters
(A0, d, β), while making sure that the initial phase always
winds by 2π around the whole ring. A0 and d control the
initial amplitude profile, while β controls the phase pro-
file. When β = 0, the initial phase winds linearly around
the ring without any phase jump. When β = 1, the initial
phase first increases linearly, then jumps by π, and then
continues to increase linearly such that the overall phase
winding is still 2π.

Many initial conditions with different initial (A0, d, β)
values were generated and simulated to observe if an in-
stanton formed during their evolutions, which would un-
twist the initially present 2π phase winding and bring the
system to the defect-free ground state. For each set of
(A0, d, β) values, 20 random initial conditions were gen-
erated by adding a random noise uniformly distributed in
the range [−π/10, π/10] to the phase at each discretised
location. Each initial condition was evolved according to
the scaled Eq. (18), and the probability of instanton for-
mation for each set of parameters is shown in Fig. 9. In
Fig. 9(a), β and A0 were varied while a constant value of
d = 0 was used. It can be observed that the change in β,
which quantifies the initial phase jump at the amplitude
dip, significantly affects the probability of instanton for-
mation. Higher initial phase jump led to a higher proba-
bility of instanton formation, for any given A0 value. At
the same time, it can also be observed that increasing

initial amplitude level A0 led to a narrower region of β
values in which instanton could form. We note that the
transition from the no-instanton to the instanton region
does not have a sharp boundary. The probability of for-
mation of an instanton increased gradually with β and
decreased gradually with A0.

In Fig. 9(b), β and d were varied while A0 had a con-
stant value of 0.5. The influence of β on probability of
instanton formation can still be observed in this plot,
but in contrast, changing the initial amplitude dip depth,
controlled by d, did not lead to a change in the proba-
bility of instanton formation. Even at d = −1, where the
initial amplitude dropped to 0 at x = 0, making the ini-
tial amplitude profile very close to that of an instanton,
the probability of instanton formation remained almost
the same as the case of d = 1, where the initial amplitude
was constant with no dip at all.

Hence, the combined results of Fig. 9(a) and (b) im-
ply that an initial phase profile with larger phase jumps
plays an important role in pushing the system towards
the formation of an instanton during its evolution, while
for the initial amplitude profile, the overall initial ampli-
tude level, quantified by A0 is a more important factor
than the magnitude of amplitude variations, quantified
by d. However, we note that the presence of amplitude
fluctuation in the dynamics remains a key ingredient in
the formation of instanton and the unwinding of initial
phase windings.

IV. PHASE UNWINDING VIA RAREFACTION
FRONTS FROM VORTEX–ANTIVORTEX

COLLISIONS

We now extend our analysis to a two-dimensional
toroidal (doubly-periodic) domain. As in the 1D case
of instantons, amplitude freedom again proves crucial for
removing a global 2π phase twist. Here, the topologi-
cal unwinding proceeds via vortex–antivortex collisions
that create extended low-density “rarefaction fronts.” In
what follows, we first clarify the topological constraint
on a 2D torus and why a single vortex cannot remove
the global phase winding (IV A). We then introduce rar-
efaction pulses in the Ginzburg–Landau context (IVB)
and show how these appear transiently during vortex–
antivortex annihilation (IV C). Finally, we contrast the
small-µ regime, where large vortex cores merge into a
domain-spanning front, with the large-µ regime, where
winding persists (IVD).

A. Topological Winding on a 2D Torus

On a doubly-periodic domain (x, y) ∈ [0, Lx] × [0, Ly],
a net 2π phase twist can be imposed along the x-direction
by setting

arg(ψ(x +Lx, y,0)) = arg(ψ(x, y,0)) + 2πq.



9

Such a global winding Wx = q cannot be continuously un-
wound if ∣ψ∣ > 0 everywhere, as it is topologically locked.
A single vortex in 2D has a 2π phase circulation around
its core but does not alter the boundary condition around
the entire horizontal cycle. Hence, removing a net wind-
ing requires two oppositely charged vortices (a vortex-
antivortex pair) whose annihilation can cut a zero-density
path across the domain, effectively letting the phase slip
by 2π.

For the dissipative Ginzburg–Landau equation, Eq. (8)
the parameter µ sets the background amplitude √µ and
the healing length ξ ∼ 1/

√
µ, which characterizes vortex-

core size. The vortex is a stationary solution of Eq. (8)
given by ϕ(r) = R(r)e±iθ with amplitude satisfying

R′′ +
R′

r
−
R

r2
+ (µ −R2

)R = 0, (22)

with boundary conditions R(0) = 0,R(∞) =
√
µ. The

vortex core (the characteristic length on which the vortex
amplitude heals itself) is ξ ∼ 1/√µ. Padé approximations
are helpful in finding an approximate expression for the
vortex core with the correct asymptotics at the centre of
the vortex core and away from it [35], and for a general
µ can be found as

ψv =
√
µr

√
a1µ + a2r2

µ2 + b1µ + a2r4
exp[±iθ], (23)

where a1 ≈ 0.3437, b1 ≈ 0.3333, a2 ≈ 0.0286. When µ
is small, each vortex has a broad core, permitting two
nearby vortices to merge their low-density regions into
one connected front. Conversely, a large µ yields small,
point-like vortices that never coalesce into a domain-
spanning rarefaction wave. This difference underlies the
success or failure of phase unwinding in 2D, as we will
show.

B. Rarefaction Pulses in the Ginzburg–Landau
Context

Although “rarefaction pulses” were derived initially
as stable solitary waves in conservative nonlinear
Schrödinger (NLS) equations [32, 35–39], they also
arise in our gain-dissipative Ginzburg–Landau framework
as transient or saddle-point configurations formed by
vortex–antivortex collisions. In a Hamiltonian BEC, a
rarefaction pulse (or Jones–Roberts soliton) is a vortex-
free density dip travelling at high velocity, belonging to a
continuous solitary-wave branch whose low-velocity limit
is a vortex dipole [32, 40–42]. When the flow speed
is above a critical value, the vortices merge into a sin-
gle dark wave (the rarefaction pulse); below that speed,
the same solitary wave separates into two discrete vortex
cores.

In a purely conservative environment at zero tempera-
ture, such pulses can propagate indefinitely as stable soli-
tary waves. By contrast, under our dissipative Ginzburg-

Landau evolution, these same local density profiles ap-
pear only transiently as the system relaxes. They serve
as short-lived saddle points, so once a 2π phase slip is
enacted, the system continues dissipating to the uniform
ground state.

Mechanism for Defect Annihilation. Despite not form-
ing a stable solitary wave, these transient pulses accom-
plish a crucial topological task: creating an extended re-
gion of ∣ψ∣ ≈ 0 that cuts across the torus, enabling a global
2π phase flip. In simpler phase-only models, the ampli-
tude is fixed, and no analogous low-density channel can
exist, so the system remains locked in the winding sector.
Hence, the amplitude freedom in Ginzburg-Landau is the
key enabler, and rarefaction pulses provide a direct 2D
analogue of the 1D instanton-mediated phase slip.

C. Collision of Large-Core Vortex–Antivortex
Pairs at Small µ

Concretely, consider a random initial condition with
a net winding Wx = 1. Under gradient-flow dynamics,
forming a vortex-antivortex pair lowers the system’s free
energy if µ is small enough that each vortex core is large
and easily overlaps with the other. As these two oppo-
site vortices collide or coalesce, they generate a domain-
spanning channel of suppressed amplitude – a “sheet”
reminiscent of a rarefaction pulse.

• Broad core overlap. Large healing length ξ ∼
1/
√
µ means each vortex has an extended region

of depressed ∣ψ∣. When oppositely charged vortices
come together, their cores merge, forming a contin-
uous low-density line.

• Global phase slip. At or near the moment of
annihilation, the part of the channel hits ∣ψ∣ ≈ 0,
allowing the phase to jump by 2π in that part, seed-
ing the removal of the winding as a secondary pair
of vortex-antivortex propagates across the channel,
completing the phase unwinding. We, therefore,
see a global topological change.

• Transient rarefaction front. Although short-
lived, the geometry is indeed that of a vortex-free
dark soliton (i.e. rarefaction pulse). Once the un-
winding occurs, the final amplitude recovers to-
ward √µ everywhere, relaxing to the ground state
Wx = 0.

Figure 10 shows an illustrative example starting with
the same initial condition: at small µ = 0.02, the system
successfully unwinds 2π winding, for larger µ = 0.05 the
system evolves into the excited state with Wx = 1. The
energy of the system is always decreasing with time, but
to gain an understanding of the evolution, we instead
follow the energy of the XY Hamiltonian. For larger µ,
the XY Hamiltonian simply relaxes to the excited state,
whereas for smaller µ, to make the phase unwinding, the
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Figure 10. XY energy during 64 × 64 Stuart–Landau simula-
tions starting from two different random conditions and two
different gains. The Hamiltonian HXY = 1

N2 ∑i,j cos(θi − θj)
is tracked while Eq. (6) is integrated with dt = 0.05, Jnm = 1,
and either µ = 0.02 or µ = 0.05 (legend). Both runs begin from
the same random state with a horizontal winding Wx = 1. For
µ = 0.05, the energy plateaus on the excited Wx = 1 branch;
for µ = 0.02, it continues downward to the Wx = 0 ground
state.

system has to go over the energy barrier of the XY Hamil-
tonian to reach the ground state and the amplitude dy-
namics allows this. In Fig. 11, we see that the rarefaction
front for smaller µ is sufficiently deep (near-zero ampli-
tude) to effect the phase slip. By t = 265, the system has
no net winding and converges to the uniform solution.

D. Persistence of Winding at Large µ

Conversely, if µ is large, each vortex core is small
and expensive to create or expand. Even if a vortex–
antivortex pair appears, their annihilation remains lo-
calised—no spanning “rarefaction pulse” emerges. Hence,
no global 2π slip is possible, and the system remains in a
metastable current state. Figure 11 exemplifies this sce-
nario: for µ = 0.05, the vortices form but never produce
a domain-wide amplitude depression, so the final state
retains Wx = 1.

In sum, amplitude freedom again underpins phase un-
winding: for small µ, large-core vortices overlap into a
transient rarefaction wave that cuts across the domain,
permitting a global topological slip. At large µ, the vor-
tices remain localised, no extended low-density channel
appears, and the system stays trapped in the winding
sector. This parallels the 1D situation (instanton vs. no
slip) but is realized here through vortex–antivortex colli-
sions and rarefaction pulses – the true 2D analog of dark
soliton flips.

Figure 11. Phase snapshots for a 64×64 Stuart–Landau lattice
[Eq. (6)] integrated with dt = 0.05 and lattice spacing l = 1.
Top row: µ = 0.05; bottom row: µ = 0.02. Both runs start
from the same random state with a horizontal windingWx = 1.
At t = 5, a vortex–antivortex pair appears; by t = 30, their
annihilation produces a rarefaction pulse. For µ = 0.05 the
pulse is too shallow to trigger a phase slip, and the system
stabilises in the excited Wx = 1 state. For µ = 0.02, the pulse
deepens to zero amplitude, enabling a global phase slip: two
defects propagate vertically (t = 265) and the lattice relaxes
to the Wx = 0 ground state.

V. DISCUSSION AND CONCLUSIONS

The present work identifies an explicit mechanism via
the formation of an instanton (in 1D) or rarefaction
pulses (in 2D) that enables the unwinding of global phase
twist in an optical network. While the qualitative idea
that amplitude freedom allows defect healing has long
been recognized, previous studies typically framed the
phenomenon in either broad heuristic terms or in context-
specific numerical observations. By contrast, we identify
and analyze in detail an analytical solution within a gain-
dissipative Stuart-Landau framework, concretely demon-
strating that local amplitude collapse to zero enables the
system’s phase to “slip” by 2π without incurring a jump
in energy. This mathematical analysis shows that the
presence of instantons and rarefaction pulses effectively
bridges different integer winding sectors in a continuous
trajectory. Our numerical simulations further establish
that this phenomenon is robust to noise and a range of
initial conditions, explaining why amplitude-driven os-
cillators can avoid getting trapped in excited states with
nonzero winding.

In this work, we uncovered a unifying amplitude-driven
mechanism for removing global phase windings in the
one-dimensional ring and two-dimensional toroidal os-
cillator networks governed by gain-dissipative dynamics.
Our analysis reveals two primary levers for guarantee-
ing that any initially present topological defects unwind,
thus allowing the system to reach its fully synchronized
ground state:

1. Operating at low effective injection (just
above threshold). When the linear drive µ (or in-
jection/pump parameter) is kept close to but above the
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onset of lasing, the system remains “soft” in amplitude.
Consequently, local collapses to near-zero amplitude oc-
cur more readily, enabling phase-slip events in 1D (in-
stanton formation) or vortex–antivortex collisions in 2D
that produce extended rarefaction pulses. If µ is taken
too large, vortices become small-core objects that cannot
extend across the domain or create a system-spanning
front, thereby locking in the initial winding. Thus, lower
µ fosters amplitude suppression and simplifies global
phase unwinding.

2. Choosing or engineering initial conditions
that favor amplitude dips. Even with moderately
large µ, it is still possible to form instantons or rar-
efaction pulses if the initial amplitude and phase pro-
files promote the development of local zero-amplitude
regions. For instance, introducing a well-placed phase
jump or an amplitude trough at specific sites can ef-
fectively seed the topological unwinding process. Con-
versely, uniform or high-amplitude initial configurations
may trap the system in excited states with nonzero wind-
ing. Hence, adopting tailored initial states accelerates
defect removal.

Our numerical sweeps confirmed that both a low injec-
tion rate and/or a favourable initial condition could fa-
cilitate the amplitude collapse at a minimal energy cost,
driving the system across topological barriers. Related
work on “bifurcation-based” or “annealing-based” optical
solvers [7, 34] similarly finds that slowly raising the effec-
tive gain leaves time for amplitude fluctuations to remove
local minima—consistent with our conclusion that spend-
ing longer in a low-µ regime improves the probability of
eliminating phase windings.

Implications for analog solvers. From an optimization
standpoint, persistent topological defects can represent
false minima, preventing networks from discovering the
true ground state. Our findings demonstrate that am-
plitude freedom is indispensable for escaping these traps:
phase-only models (e.g. Kuramoto) cannot shed global
windings, while Stuart–Landau or laser-rate equations
readily do so via zero-amplitude cores. Practically, this

implies that photonic or oscillator-based hardware aim-
ing to solve XY-type spin problems should: A. Main-
tain pump levels only slightly above threshold, ensuring
a greater range of amplitude fluctuations; B. Introduce
mild inhomogeneities or “phase jumps” in the initial con-
dition so the system does not begin in a uniform high-
amplitude state resistant to phase slips; C. Consider slow
ramping protocols (“annealing”) that preserve low am-
plitude for enough time to let instantons or rarefaction
fronts nucleate and remove windings.

Outlook. Although we focused primarily on ring lat-
tices (1D) and toroidal grids (2D) and ferromagnetic cou-
plings, the same principles hold for more general cou-
pling graphs—where amplitude collapses can remove loop
windings or vortex-like defects. Extending these insights
to larger dimension or to spin-glass–type connectivity re-
mains a compelling avenue, as does integrating active
feedback to strategically trigger amplitude dips. We
envision that instanton-aided photonic optimization de-
vices could combine amplitude control, targeted seeding,
and slow injection schedules to systematically avoid local
minima. In short, keeping the injection rate barely above
the threshold, along with ensuring a non-uniform initial
condition, emerges as a potent recipe for global phase
ordering in gain-dissipative oscillator networks. This
amplitude-enabled unwinding (instantons in 1D or rar-
efaction pulses in 2D) provides a promising framework
for next-generation photonic solvers, where robust and
scalable computation depends critically on reliably re-
moving topological defects.
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